ORGANIC

Cyclization of Nonterminal Alkynic β -Keto Esters Catalyzed by Gold(I) Complex with a Semihollow, End-Capped Triethynylphosphine Ligand

Hideto Ito, Yusuke Makida, Atsuko Ochida, Hirohisa Ohmiya, and Masaya Sawamura*

Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan sawamura@sci.hokudai.ac.jp

Received September 5, 2008

ABSTRACT

A cationic gold(I) complex with a semihollow-shaped trialkynylphosphine catalyzed 5-*exo-dig* and 6-*endo-dig* cyclizations of various internal alkynic β -keto esters, showing a marked advantage over a gold(I)-PPh₃ complex with respect to the rates of the reactions and the product yields. It is proposed that the gold-bound alkynic substrate in a catalytic pocket must be somewhat folded and that such a steric effect makes the carbon-carbon bond formation entropically more favorable.

Electrophilic activation of an alkyne by the coordination of a π -Lewis acidic metal cation induces the attack of a nucleophile that occurs at an appropriate position within the molecule. For such alkyne cyclizations, gold is the most active catalyst among various metal ions, and gold-phosphine complexes have been applied to various types of alkyne cyclizations.^{1,2} The ring-forming gold catalysts, however, suffer from at least two serious problems. First, they are limited to the cases where cyclization is entropically quite favorable such as five-membered ring formations.^{2a} Second, the cyclization of internal alkynes is often hampered by steric repulsion between the terminal substituent and a nucleophile at the C–C bond-forming step.^{2b} We previously reported on the design and synthesis of semihollow-shaped trialky-nylphosphine **1a**, which consists of a triethynylphosphine

For reviews on gold catalysis, see: (a) Hashmi, A. S. K. Chem. Rev. 2007, 107, 3180–3211. (b) Li, Z.; Brouwer, C.; He, C. Chem. Rev. 2008, 108, 3239–3265. (c) Arcadi, A. Chem. Rev. 2008, 108, 3266–3325. (d) Jiménez-Núñez, E.; Echavarren, A. M. Chem. Rev. 2008, 108, 3326–3350. (e) Gorin, D. J.; Sherry, B. D.; Toste, F. D. Chem. Rev. 2008, 108, 3351–3378.

⁽²⁾ For gold(I)-catalyzed cyclizations of acetylenic keto esters, see: (a) Kennedy-Smith, J. J.; Staben, S. T.; Toste, F. D. *J. Am. Chem. Soc.* **2004**, *126*, 4526–4527. (b) Staben, S. T.; Kennedy-Smith, J. J.; Toste, F. D. *Angew. Chem., Int. Ed.* **2004**, *43*, 5350–5352. (c) Mézailles, N.; Ricard, L.; Gagosz, F. *Org. Lett.* **2005**, *7*, 4133–4136.

Figure 1. Semihollow, end-capped triethynylphosphine 1a and triethynylphosphines (1b,c) with smaller silicon end caps.

core and bulky end caps (Figure 1).^{3,4} This ligand (**1a**) markedly accelerated ring-forming gold(I) catalysts with various terminal alkynes, allowing for six- and sevenmembered ring formations that are difficult to achieve with conventional ligands because of the flexibility of the substrates.⁵ These results represented our approach to the first issue. Here we report on our challenge toward the second issue: The gold(I) complex with **1a** catalyzed the cyclizations of nonterminal alkynic β -keto esters that afford the sterically congested five- and six-membered ring compounds.

The semihollow triethynylphosphine (1a) showed a marked advantage over conventional phosphine ligands such as PPh3 and P(OPh)₃ when applied to the gold-catalyzed cyclization of internal alkyne 2a with a keto ester functionality (Table 1, entry 1 vs entries 4-7).⁶ Thus, treatment of **2a** with a CH₂Cl₂ solution of cationic gold(I) complex [Au(NTf₂)(**1a**)] (1 mol %) resulted in smooth conversion at rt; the reaction completed within 3 h to afford 5-exo-dig and 6-endo-dig cyclization products 3a and 4a in a good combined yield, with preference to the former (80:20), which seems to be sterically more congested and hence energetically less favorable but entropically more favorable than the latter (entry 1). No E-isomer of exo-alkene 3a was formed, suggesting anti-stereochemistry of a nucleophilic attack to a gold-alkyne π complex (Scheme 1).² To the best of our knowledge, the gold-catalyzed 5-exo-dig/6-endo-dig cyclization of a nonterminal alkynic keto ester has not been described in the literature.^{2b}

In contrast, there was almost no reaction with the corresponding PPh₃ complex with the same reaction time (3 h, 4% conversion, entry 4). Prolonging the time to 24 h caused only a slight conversion (12% conversion, 24 h, entry 5). The complex formed with the P(OPh)₃ ligand, whose donor

(4) For a review concerning the synthesis and applications of bowlshaped phosphine ligands, whose steric feature is related to our triethynylphosphine ligands, see: Tsuji, Y.; Fujiwara, T. *Chem. Lett.* **2007**, *36*, 1296–1301.

entry	2	ligand	time (h)	$\begin{array}{c} \operatorname{convn} \\ \operatorname{of} 2^b \\ (\%) \end{array}$	3 + 4 , yield (%)	3/4ratio ^b
1	2a	1a	3	100	80^c	80:20
2	2a	1b	24	0	0^b	$N.A.^d$
3	2a	1c	24	12	12^b	85:15
4	2a	PPh_3	3	4	4^b	$N.D.^{e}$
5	2a	PPh_3	24	12	11^b	89:11
6	2a	P(OPh) ₃	3	6	6^b	$N.D.^{e}$
7	2a	$P(OPh)_3$	24	13	13^b	85:15
8	2b	1a	12	100	97^c	91:9
9	2b	PPh_3	24	21	12	95:5
10	2c	1a	20	100	94	92:8
11	2c	PPh_3	24	12	12^b	100:0
12	2d	1a	24	100	86^c	45:55
13	2d	PPh_3	24	23	13	54:46

^{*a*} Conditions: **2**, 0.40 mmol; CH₂Cl₂, 1 mL. ^{*b*} Determined by NMR. ^{*c*} Isolated yield. ^{*d*} Not applicable. ^{*e*} Not determined.

Scheme 1. Proposed Mechanism for the Reaction of 2a-d

power is comparable with $1,^3$ was only as efficient as the PPh₃ complex (3 h, 6% conversion, entry 6; 24 h, 13% conversion, entry 7). Furthermore, triethynylphosphines (**1b**,**c**) bearing smaller silicon end caps such as Ph₃Si and (*i*-Pr)₃Si groups were not effective (entries 2 and 3).

Even with the internal alkynes (2b-d) bearing bulkier terminal substituents such as Bu, *i*-Pr, and Ph groups, the reaction with the Au-1a catalyst proceeded smoothly and afforded the corresponding five- and six-membered ring compounds (3b-d/4b-d) in high yields (Table 1, entries 8, 10, and 12). With the Au-PPh₃ catalyst, the reaction was again much slower and gave the cyclization products in only very low yields (entries 9, 11, and 13).

The effect of the terminal substituent (R) of **2** on the 5-*exo*/ 6-*endo* selectivity may give an insight into the mechanism of the gold-catalyzed Conia—ene reaction. As the terminal alkyl substituents became bulkier (Me \leq Bu \leq *i*-Pr), the

⁽³⁾ Ochida, A.; Sawamura, M. Chem.-Asian J. 2007, 2, 609-618.

⁽⁵⁾ Ochida, A.; Ito, H.; Sawamura, M. J. Am. Chem. Soc. 2006, 128, 16486–16487.

⁽⁶⁾ The cyclization products did not form in the presence of AuCl(1a), Ag(NTf₂), and HNTf₂ (1 mol %) under othewise identical conditions (24 h). Slight decomposition of 2a (7%, 24 h) occurred with HNTf₂.

			-	convn of	product	3 + 4	3/4
entry	alkyne	ligand	time	$2^{b}(\%)$	3(5-exo-dig) + 4(6-endo-dig)	yield (%)	ratio ^b
1	0 \\\\ CO-Me	1a	24	100		96°	49:51
2		PPh ₃	24	82		77 ^b	43:57
3	2f Me	PPh_3	48	99	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ H\\ \end{array} & \begin{array}{c} \end{array} & \end{array} & \begin{array}{c} \end{array} & \end{array} & \begin{array}{c} \end{array} & \begin{array}{c} \end{array} & \begin{array}{c} \end{array} & \begin{array}{c} \end{array} & \end{array} & \begin{array}{c} \end{array} & \begin{array}{c} \end{array} & \end{array} & \begin{array}{c} \end{array} & \end{array} & \end{array} & \begin{array}{c} \end{array} & \begin{array}{c} \end{array} & \end{array} &$	66^b	43:57
4	0	1a	24	100		87°	67:33
5	CO ₂ Et	PPh_3	24	55		43^{b}	62:38
6	2g Me	PPh ₃	48	87	$4\mathbf{g}$	76 ^{<i>b</i>}	68:32
7	0	1a	24	100	0, 0,	99 ^c	63:37
8	CO ₂ Me	PPh_3	24	21		21 ^b	44:56
9	2h ^{Bu}	PPh ₃	48	24	Bu 3h 4h	22^{b}	48:52
10	CO ₂ Me	1a	1	100	O ∐CO₂Me	70 ^c	0:100
11	21	PPh ₃	1	22	Me	10 ^{<i>b</i>}	0:100
12	Me	PPh	48	77	H 4i	42^{b}	0:100
13		1a	0.5	100		89 ^c	0:100
14	Me	PPh ₃	0.5	42	Me	39^{b}	0:100
15	Bu 2j	PPh_3	10	100	Me ['] OCH₂Ph 4j	82°	0:100

^{*a*} Conditions: 2, 0.40 mmol; Au(NTf₂) (ligand), 0.004 mmol (1 mol %); CH₂Cl₂, 1 mL; 25 °C unless otherwise noted. ^{*b*} Determined by NMR. ^{*c*} Isolated yield.

selectivity for 5-*exo* product **3** increased: 80%, 91%, and 92% with **1a** (Table 1, entries 1, 8 and 10); 89%, 95%, and 100% with PPh₃ (entries 5, 9 and 11). In the proposed C–C bond-forming transition states (Scheme 1), the terminal substituent should encounter steric repulsions not only with the incoming nucleophile but also with the Au–PR'₃ moiety. The former should be larger in the 5-*exo*-transition state (*cis*-vicinal), while the latter in the 6-*endo*-transition state (*cis*-vicinal). Accordingly, the increase of the *exo* selectivity upon the increase of the size of the terminal substituent R is likely due to the steric repulsion between R and the Au–PR'₃ moiety.

The catalysis of gold–1a appeared to be effective even when the acyclic alkyne (2e) has a quaternary carbon center at the internal α -position (Scheme 2). While no reaction occurred at rt, the reaction at 80 °C in DCE converted the hindered alkyne (2e) cleanly into a mixture of 5-*exo-dig* (3e) and 6-*endo-dig* (4e) cyclization products with a preference to the 6-*endo* isomer.⁷ The observed regioselectivity is consistent with our rationale for the 5-*exo* selectivity in the reaction of 2a–d: In the reaction of 2e, the Au–PR'₃

fragment encounters more steric repulsion with the geminally substituted inner substituent than with the terminal Me substituent.

Albeit to a reduced extent, the advantage of **1a** over PPh₃ appeared to be significant in the synthesis of sterically congested bicyclic compounds by the annulation of cyclic compounds (Table 2). When [Au(NTf₂)(**1a**)] (1 mol %) was employed, the *5-exo/6-endo* annulation of an alkyne pendant onto a cyclopentanone (Table 2, entry 1) and a cyclohex-anone (entry 4) completed within 24 h to afford **3f/4f** (49: 51) and **3g/4g** (67:33), respectively, in high yields and in complete diastereoselectivity. The same reactions also proceeded with [Au(NTf₂)(PPh₃)], but they were slower and formed unidentified side products, resulting in lower yields

⁽⁷⁾ The reaction of **2e** with the Au–PPh₃ catalyst: 24 h; 41% conversion; 35% yield; **3e/4e**, 12:88. 48 h; 44% conversion; 44% yield; **3e/4e**, 12:88.

of the desired products even after complete comsumption of the alkynes (entries 2, 3, 5, and 6). Although the insertion of an aromatic ring between an alkyne and a nucleophile tends to make the cyclization easier, the reaction of **2h**, having a keto ester attached to the terminal of a side chain, appeared to be less feasible under the conventional conditions with the PPh₃ ligand (entry 8 and 9). On the contrary, the gold—**1a** catalyst achieved quatitative conversion for this transformation (entry 7).

Notably, the reaction of **2i** proceeded with complete regioselectivity to afford bicyclo[3.3.1]nonenone **4i** irrespective of the ligand used; however, **1a** showed much higher efficiency in terms of both the rate of the reaction and the yield of **4i** (Table 2, entries 10-12). Additionally, similar results were obtained in the reaction of **2j**, which provided highly substituted bicyclo[2.2.2]octenone derivative **4j** (entries 13-15).

Our molecular modeling simulations indicated that the gold-bound alkynic substrate⁸ in a catalytic pocket created by the semihollow ligand must be somewhat folded. Accordingly, we assume that such a steric effect makes the

carbon—carbon bond formation entropically more favorable so that the gold-catalyzed cyclization of internal alkynes becomes feasible against steric repulsions (see Scheme 1) at the transition state.

In summary, the scope of the gold-catalyzed Conia—ene reaction has substantially been expanded so as to involve 5-*exo-dig* and 6-*endo-dig* cyclizations of internal alkynic β -keto esters by employing the semihollow-shaped end-capped triethynylphosphine as a ligand of a cationic gold(I) catalyst. Studies to explore the applicability of the semihollow-shaped ligand toward various transition-metal catalysts is underway.

Acknowledgment. This work was supported by Grantin-Aid for Scientific Research (B) (No. 18350047) from JSPS and Grant-in-Aid for Scientific Research on Priority Area (No. 20037003, "Chemistry of Concerto Catalysis") from MEXT. A.O. thanks JSPS for a fellowship.

Supporting Information Available: Experimental procedures and NMR spectra for new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

OL802079R

⁽⁸⁾ For the structure of an isolated gold(I)-alkyne complex, see: Shapiro, N. D.; Toste, F. D. *Proc. Nat. Acad. Sci. U.S.A.* **2008**, *105*, 2779–2782.