LETTERS **2008 Vol. 10, No. 21 ⁵⁰⁵¹**-**⁵⁰⁵⁴**

ORGANIC

Cyclization of Nonterminal Alkynic B-Keto Esters Catalyzed by Gold(I) Complex with a Semihollow, End-Capped Triethynylphosphine Ligand

Hideto Ito, Yusuke Makida, Atsuko Ochida, Hirohisa Ohmiya, and Masaya Sawamura*

Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan sawamura@sci.hokudai.ac.jp

Received September 5, 2008

ABSTRACT

A cationic gold(I) complex with a semihollow-shaped trialkynylphosphine catalyzed 5-*exo***-***dig* **and 6-***endo***-***dig* **cyclizations of various internal** alkynic β -keto esters, showing a marked advantage over a gold(I)-PPh₃ complex with respect to the rates of the reactions and the product **yields. It is proposed that the gold-bound alkynic substrate in a catalytic pocket must be somewhat folded and that such a steric effect makes the carbon**-**carbon bond formation entropically more favorable.**

Electrophilic activation of an alkyne by the coordination of ^a *^π*-Lewis acidic metal cation induces the attack of a nucleophile that occurs at an appropriate position within the molecule. For such alkyne cyclizations, gold is the most active catalyst among various metal ions, and gold-phosphine complexes have been applied to various types of alkyne cyclizations.^{1,2} The ring-forming gold catalysts, however, suffer from at least two serious problems. First, they are limited to the cases where cyclization is entropically quite favorable such as five-membered ring formations.^{2a} Second, the cyclization of internal alkynes is often hampered by steric repulsion between the terminal substituent and a nucleophile at the $C-C$ bond-forming step.^{2b} We previously reported on the design and synthesis of semihollow-shaped trialkynylphosphine **1a**, which consists of a triethynylphosphine

⁽¹⁾ For reviews on gold catalysis, see: (a) Hashmi, A. S. K. *Chem. Re*V*.* **²⁰⁰⁷**, *¹⁰⁷*, 3180–3211. (b) Li, Z.; Brouwer, C.; He, C. *Chem. Re*V*.* **²⁰⁰⁸**, *¹⁰⁸*, 3239–3265. (c) Arcadi, A. *Chem. Re*V*.* **²⁰⁰⁸**, *¹⁰⁸*, 3266–3325. (d) Jime´nez-Nu´n˜ez, E.; Echavarren, A. M. *Chem. Re*V*.* **²⁰⁰⁸**, *¹⁰⁸*, 3326–3350. (e) Gorin, D. J.; Sherry, B. D.; Toste, F. D. *Chem. Re*V*.* **²⁰⁰⁸**, *¹⁰⁸*, 3351– 3378.

⁽²⁾ For gold(I)-catalyzed cyclizations of acetylenic keto esters, see: (a) Kennedy-Smith, J. J.; Staben, S. T.; Toste, F. D. *J. Am. Chem. Soc.* **2004**, *126*, 4526–4527. (b) Staben, S. T.; Kennedy-Smith, J. J.; Toste, F. D. *Angew. Chem., Int. Ed.* **2004**, *43*, 5350–5352. (c) Me´zailles, N.; Ricard, L.; Gagosz, F. *Org. Lett.* **2005**, *7*, 4133–4136.

Figure 1. Semihollow, end-capped triethynylphosphine **1a** and triethynylphosphines (**1b**,**c**) with smaller silicon end caps.

core and bulky end caps (Figure 1).^{3,4} This ligand (**1a**) markedly accelerated ring-forming gold(I) catalysts with various terminal alkynes, allowing for six- and sevenmembered ring formations that are difficult to achieve with conventional ligands because of the flexibility of the substrates.⁵ These results represented our approach to the first issue. Here we report on our challenge toward the second issue: The gold(I) complex with **1a** catalyzed the cyclizations of nonterminal alkynic β -keto esters that afford the sterically congested five- and six-membered ring compounds.

The semihollow triethynylphosphine (**1a**) showed a marked advantage over conventional phosphine ligands such as PPh₃ and $P(OPh)$ ₃ when applied to the gold-catalyzed cyclization of internal alkyne **2a** with a keto ester functionality (Table 1, entry 1 vs entries $4-7$).⁶ Thus, treatment of 2a with a CH2Cl2 solution of cationic gold(I) complex [Au(NTf2)(**1a**)] (1 mol %) resulted in smooth conversion at rt; the reaction completed within 3 h to afford 5-*exo*-*dig* and 6-*endo*-*dig* cyclization products **3a** and **4a** in a good combined yield, with preference to the former (80:20), which seems to be sterically more congested and hence energetically less favorable but entropically more favorable than the latter (entry 1). No *E*-isomer of *exo*-alkene **3a** was formed, suggesting *anti*-stereochemistry of a nucleophilic attack to a gold-alkyne π complex (Scheme 1).² To the best of our knowledge, the gold-catalyzed 5-*exo*-*dig*/6-*endo*-*dig* cyclization of a nonterminal alkynic keto ester has not been described in the literature.^{2b}

In contrast, there was almost no reaction with the corresponding PP h_3 complex with the same reaction time (3 h, 4% conversion, entry 4). Prolonging the time to 24 h caused only a slight conversion (12% conversion, 24 h, entry 5). The complex formed with the $P(OPh)$ ₃ ligand, whose donor **Table 1.** Gold-Catalyzed Conia-Ene Reaction of **2a**-**d***^a*

^a Conditions: **²**, 0.40 mmol; CH2Cl2, 1 mL. *^b* Determined by NMR. *^c* Isolated yield. *^d* Not applicable. *^e* Not determined.

Scheme 1. Proposed Mechanism for the Reaction of **2a**-**^d**

power is comparable with **1**, ³ was only as efficient as the PPh3 complex (3 h, 6% conversion, entry 6; 24 h, 13% conversion, entry 7). Furthermore, triethynylphosphines $(1b,c)$ bearing smaller silicon end caps such as $Ph₃Si$ and (*i*-Pr)3Si groups were not effective (entries 2 and 3).

Even with the internal alkynes $(2b-d)$ bearing bulkier terminal substituents such as Bu, *i*-Pr, and Ph groups, the reaction with the Au-**1a** catalyst proceeded smoothly and afforded the corresponding five- and six-membered ring compounds (**3b**-**d**/**4b**-**d**) in high yields (Table 1, entries 8, 10, and 12). With the $Au-PPh_3$ catalyst, the reaction was again much slower and gave the cyclization products in only very low yields (entries 9, 11, and 13).

The effect of the terminal substituent (R) of **2** on the 5-*exo*/ 6-*endo* selectivity may give an insight into the mechanism of the gold-catalyzed Conia-ene reaction. As the terminal alkyl substituents became bulkier (Me < Bu < *ⁱ*-Pr), the

⁽³⁾ Ochida, A.; Sawamura, M. *Chem.* $-Asian J.$ **2007**, 2, 609-618.

⁽⁴⁾ For a review concerning the synthesis and applications of bowlshaped phosphine ligands, whose steric feature is related to our triethynylphosphine ligands, see: Tsuji, Y.; Fujiwara, T. *Chem. Lett.* **2007**, *36*, 1296–1301.

⁽⁵⁾ Ochida, A.; Ito, H.; Sawamura, M. *J. Am. Chem. Soc.* **2006**, *128*, 16486–16487.

⁽⁶⁾ The cyclization products did not form in the presence of AuCl(**1a**), Ag(NTf₂), and HNTf₂ (1 mol %) under othewise identical conditions (24 h). Slight decomposition of **2a** (7%, 24 h) occurred with HNTf2.

^a Conditions: **2**, 0.40 mmol; Au(NTf2) (ligand), 0.004 mmol (1 mol %); CH2Cl2, 1 mL; 25 °C unless otherwise noted. *^b* Determined by NMR. *^c* Isolated yield.

selectivity for 5-*exo* product **3** increased: 80%, 91%, and 92% with **1a** (Table 1, entries 1, 8 and 10); 89%, 95%, and 100% with PPh₃ (entries 5, 9 and 11). In the proposed C-C bond-forming transition states (Scheme 1), the terminal substituent should encounter steric repulsions not only with the incoming nucleophile but also with the Au–PR′³ moiety. The former should be larger in the 5-*exo*-transition state (geminal), while the latter in the 6-*endo*-transition state (*cis*vicinal). Accordingly, the increase of the *exo* selectivity upon the increase of the size of the terminal substituent R is likely due to the steric repulsion between R and the $Au-PR'_3$ moiety.

The catalysis of gold-**1a** appeared to be effective even when the acyclic alkyne (**2e**) has a quaternary carbon center at the internal α -position (Scheme 2). While no reaction occurred at rt, the reaction at 80 °C in DCE converted the hindered alkyne (**2e**) cleanly into a mixture of 5-*exo*-*dig* (**3e**) and 6-*endo*-*dig* (**4e**) cyclization products with a preference to the 6-*endo* isomer.⁷ The observed regioselectivity is consistent with our rationale for the 5-*exo* selectivity in the reaction of $2a-d$: In the reaction of $2e$, the Au-PR'₃

fragment encounters more steric repulsion with the geminally substituted inner substituent than with the terminal Me substituent.

Albeit to a reduced extent, the advantage of **1a** over PPh₃ appeared to be significant in the synthesis of sterically congested bicyclic compounds by the annulation of cyclic compounds (Table 2). When $[Au(NTf_2)(1a)]$ (1 mol %) was employed, the 5-*exo*/6-*endo* annulation of an alkyne pendant onto a cyclopentanone (Table 2, entry 1) and a cyclohexanone (entry 4) completed within 24 h to afford **3f**/**4f** (49: 51) and **3g**/**4g** (67:33), respectively, in high yields and in complete diastereoselectivity. The same reactions also proceeded with $[Au(NTf₂)(PPh₃)]$, but they were slower and formed unidentified side products, resulting in lower yields

⁽⁷⁾ The reaction of 2e with the Au-PPh₃ catalyst: 24 h; 41% conversion; 35% yield; **3e**/**4e**, 12:88. 48 h; 44% conversion; 44% yield; **3e**/**4e**, 12:88.

of the desired products even after complete comsumption of the alkynes (entries 2, 3, 5, and 6). Although the insertion of an aromatic ring between an alkyne and a nucleophile tends to make the cyclization easier, the reaction of **2h**, having a keto ester attached to the terminal of a side chain, appeared to be less feasible under the conventional conditions with the PP h_3 ligand (entry 8 and 9). On the contrary, the gold-**1a** catalyst achieved quatitative conversion for this transformation (entry 7).

Notably, the reaction of **2i** proceeded with complete regioselectivity to afford bicyclo[3.3.1]nonenone **4i** irrespective of the ligand used; however, **1a** showed much higher efficiency in terms of both the rate of the reaction and the yield of **4i** (Table 2, entries 10-12). Additionally, similar results were obtained in the reaction of **2j**, which provided highly substituted bicyclo[2.2.2]octenone derivative **4j** (entries $13-15$).

Our molecular modeling simulations indicated that the gold-bound alkynic substrate⁸ in a catalytic pocket created by the semihollow ligand must be somewhat folded. Accordingly, we assume that such a steric effect makes the carbon-carbon bond formation entropically more favorable so that the gold-catalyzed cyclization of internal alkynes becomes feasible against steric repulsions (see Scheme 1) at the transition state.

In summary, the scope of the gold-catalyzed Conia-ene reaction has substantially been expanded so as to involve 5-*exo*-*dig* and 6-*endo*-*dig* cyclizations of internal alkynic β -keto esters by employing the semihollow-shaped endcapped triethynylphosphine as a ligand of a cationic gold(I) catalyst. Studies to explore the applicability of the semihollow-shaped ligand toward various transition-metal catalysts is underway.

Acknowledgment. This work was supported by Grantin-Aid for Scientific Research (B) (No. 18350047) from JSPS and Grant-in-Aid for Scientific Research on Priority Area (No. 20037003, "Chemistry of Concerto Catalysis") from MEXT. A.O. thanks JSPS for a fellowship.

Supporting Information Available: Experimental procedures and NMR spectra for new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

OL802079R

⁽⁸⁾ For the structure of an isolated gold(I)-alkyne complex, see: Shapiro, N. D.; Toste, F. D. *Proc. Nat. Acad. Sci. U.S.A.* **2008**, *105*, 2779–2782.